set $x_e \leftarrow 1$ for $e \in P$ and $x_e \leftarrow 0$ else
For $e \in P$ Do
mm compute shortest $o,d$-path $P_{-e}$ in $G_{-e}$ wrt. $b_e$
mm set $p_e \leftarrow b_e + \bigl(\sum_{e' \in P_{-e}}b_{e'} - \sum_{e' \in P}b_{e'}\bigr)$
Thm. 5.6: The VCG mechanism is strategyproof and efficient.
ยง5.4 Single-Minded Bidders
multiple items $E=\set{1,\dots,m}$
multiple players/buyers $N = \set{1,\dots,n}$
set of possible allocations $X \coloneqq \set{x: E \to N \cup \set{\bot}}$
every buyer wants exactly one bundle of items, i.e.
every player has $\emptyset \neq W_i \subseteq E$ and $w_i \in \IRnn$ with
\[v_i(x) = \begin{cases}w_i, &\text{if } W_i \subseteq x^{-1}(i)\\0, &\text{else}\end{cases} \text{ for all } x \in X\]
every buyer declares bid $(B_i,b_i)$ with $B_i \subseteq E$, $b_i \in \IRnn$
Optimal Allocation for Single Minded Bidders (OAfSMB): Input: players $N$, items $E$, bids $((B_i,b_i))_{i \in N}$ Output: set of winners $N^* \subseteq N$ with $B_i \cap B_j = \emptyset$ f.a. $i,j \in N^*$ Output: such that $\sum_{i \in N^*}b_i$ maximal
Thm. 5.7:
OAfSMB is NP-hard.
mechanism is $\alpha$-efficient if $M((W_i,w_i)) = (x',p)$ with $\sum_{i \in N}v_i(x') \geq \frac{1}{\alpha}\max_{x \in X}v_i(c)$
Thm. 5.11:
No $\bigO(\abs{E}^{1/2-\eps})$-efficient polynomial mechanism for any $\eps \gt 0$ Thm. 5.11:
for single minded bidders unless NP $\subseteq$ ZPP
Maximum Independent Set: Input: undirectd graph $D=(V,E)$ Output: set $I \subseteq V$ with $\set{u,v} \notin E$ f.a. $u,v \in I$ Output: such that $\abs{I}$ maximal
Fact:
Maximum Independent Set is NP-hard.
Fact:
No polynomial $\bigO(\abs{V}^{1-\eps})$-approximation algorithm Fact:
for Maximum Independent Set unless NP $\subseteq$ ZPP
Greedy MechanismInput: bids $(B_i,b_i) \in \PSet{E} \times \IRnn$ for all $i \in N$ Output: winners $N' \subseteq N$ and payments $p \in \IRnn^{N'}$
mmIf $B_i \cap B_j = \emptyset$ f.a. $j \in N'$ Then $N' \leftarrow N' \cup \set{i}$
For $i \in N'$ Do
mm set $j \leftarrow \inf\Set{j' \gt i \SMid \begin{array}{l}B_i \cap B_{j'} \neq \emptyset \text{ and }\\ B_k \cap B_{j'} = \emptyset \text{ f.a. } k \lt j', k \in N'\setminus\set{i}\end{array}}$
$x$ implementable $\implies$ payment rule defined by $p_i(b) \coloneqq \sum_{j=1}^\ell z_j h_j$ mmmwhere $z_j$ are jump points of $x_i(\_,b_{-i})$ until $b_i$ with height $h_j$
Computational Game Theory (WiSe25/26), ยง5 Combinatorial Auctions