Your browser doesn't support the features required by impress.js, so you are presented with a simplified version of this presentation.

For the best experience please use the latest Chrome, Safari or Firefox browser.

\[ \newcommand{\IR}{\mathbb{R}} \newcommand{\IRnn}{\IR_{\geq 0}} \newcommand{\IRp}{\IR_{\gt 0}} \newcommand{\IN}{\mathbb{N}} \newcommand{\INo}{\IN_0} \newcommand{\INs}{\IN^\ast} \newcommand{\coloneqq}{\mathbin{:=}} \newcommand{\eqqcolon}{\mathbin{=:}} \newcommand{\coloniff}{\mathbin{:\!\!\iff}} \newcommand{\dcup}{\mathbin{\dot\cup}} \newcommand{\sMid}{\,|\,} \newcommand{\Set}[1]{\left\lbrace#1\right\rbrace} \newcommand{\SMid}{\,\middle|\,} \newcommand{\abs}[1]{\lvert#1\rvert} \newcommand{\Abs}[1]{\left\lvert#1\right\rvert} \newcommand{\norm}[1]{\lVert#1\rVert} \newcommand{\Norm}[1]{\left\lVert#1\right\rVert} \newcommand{\argmin}{\mathop{\mathrm{argmin}}} \newcommand{\argmax}{\mathop{\mathrm{argmax}}} \newcommand{\PSet}[1]{2^{#1}} \newcommand{\bigO}{\mathcal{O}} \newcommand{\transp}{^\top} \newcommand{\sgn}{\mathop{\mathrm{sgn}}} \newcommand{\eps}{\varepsilon} \newcommand{\rddots}{\large{\small.}^{.^.}} \newcommand{\CharF}[1]{\chi_{#1}} \newcommand{\diff}{\;\mathrm{d}} \newcommand{\classFP}{\mathrm{FP}} \newcommand{\classFNP}{\mathrm{FNP}} \newcommand{\classFNPC}{\mathrm{FNPC}} \newcommand{\classTFNP}{\mathrm{TFNP}} \newcommand{\classPPAD}{\mathrm{PPAD}} \newcommand{\classPLS}{\mathrm{PLS}} \]

ยง5 Combinatorial Auctions

  • set of items to be sold
  • set of potential buyers (=players)
  • players have values for items (secret) and place bids for items (simultaneously)
  • based on bids, mechanism decides on allocation of items and payments
mechanism should be:
  • efficient: maximises social welfare
  • strategyproof: incentivises players to bid truthfully
  • computable: runs in polynomial time
๐ŸŒ ๐ŸŽ ๐Ÿ‡ 4 โ‚ฌ 0 โ‚ฌ 3 โ‚ฌ ๐ŸŽ = 2 ๐ŸŒ+๐Ÿ‡ = 5 ...   ๐ŸŽ = 2 ๐ŸŒ+๐Ÿ‡ = 5 ...   ๐ŸŽ = 1 ๐ŸŒ+๐ŸŽ = 6 ...   ๐ŸŒ+๐ŸŽ = 4 ๐ŸŽ+๐Ÿ‡ = 2 ...   ๐Ÿ‡ = 2 ๐ŸŽ = 2 ...   ๐Ÿ‡ = 4 ๐ŸŽ = 3 ...  

ยง5.1 Vickrey Auction

  • a single item
  • set of players $N$ with (private) valuation $v_i \in \IRnn$
  • each player submits a single (sealed) bid $b_i \in \IRnn$
  • mechanism $M: \IRnn^N \to \set{0,1}^N \times \IRnn^N, b \mapsto (x,p)$
    • $x$ allocation where $x_i=1 \iff$ player $i$ gets item
        โคณ require $\sum_i x_i=1$
    • $p$ payments where $p_i =$ payment of player $i$
        โคณ require $p_i \leq x_i\cdot b_i$
    $\implies$ $i$'s utility of $M(b)$ is $u_i(x,p) \coloneqq x_i\cdot(v_i-p_i)$
โคณ game $(N,\IRnn^N,u\circ M)$
Second-Price Auction
Input: bids $b \in \IRnn^N$
Output: allocation $x \in \set{0,1}^N$ and payments $p \in \IRnn^N$
  1. choose $i \in \argmax_{j \in N}b_j$
  2. set $x_i \leftarrow 1$ and $p_i \leftarrow \max_{j \neq i}b_j$
  3. set $x_j \leftarrow 0$ and $p_j \leftarrow 0$ f.a. $j \neq i$
Thm. 5.2: Second-price auction is
  • strategyproof: $u_i(M(v_i,b_{-i})) \geq u_i(M(b_i,b_{-i}))$ f.a. $i \in N, b \in \IRnn^N$
  • efficient: maximises $\sum_i x_i v_i$ under truthful bidding
  • computable: runs in polynomial time

ยง5.2 Transport Coordination

  • directed graph $D=(V,E)$ with origin $o \in V$, destination $d \in V$
  • Goal: transport an item from $o$ to $d$
  • edges $e \in E$ are players with (private) costs $c_e \in \IRnn$
  • players make bids ("declared costs") $b_e \in \IRnn$
  • mechanism $M: \IRnn^N \to \set{0,1}^E \times \IRnn^N, b \mapsto (x,p)$
    • $\set{e \in E \sMid x_e = 1}$ form $o,d$-path
    • $p_e =$ payment to player $e$
    $\implies$ $e$'s utility of $M(b)$ is $u_e(x,p) \coloneqq x_e\cdot(p_e-c_e)$
Mechanism KW
Input: bids $b \in \IRnn^E$
Output: allocation $x \in \set{0,1}^E$ and payments $p \in \IRnn^E$
  1. compute shortest $o,d$-path $P$ wrt. edge costs $b_e$
  2. set $x_e \leftarrow 1$ for $e \in P$ and $x_e \leftarrow 0$ else
  3. For $e \in P$ Do
  4. mm compute shortest $o,d$-path $P_{-e}$ in $G_{-e}$ wrt. $b_e$
  5. mm set $p_e \leftarrow b_e + \bigl(\sum_{e' \in P_{-e}}b_{e'} - \sum_{e' \in P}b_{e'}\bigr)$
Thm. 5.4: Mechanism KW is strategyproof, efficient and polynomial (if no player has a monopoly position)
2 3 4 5 3 3 5 โ‚ฌ 1 4 3 4 2 โ‚ฌ 2 2 5 7 3 โ‚ฌ 2 2 \small\color{black} o \small\color{black} d
Second-Price Auction
Input: bids $b \in \IRnn^N$
Output: allocation $x \in \set{0,1}^N$ and payments $p \in \IRnn^N$
  1. choose $i \in \argmax_{j \in N}b_j$
  2. set $x_i \leftarrow 1$ and $p_i \leftarrow \max_{j \neq i}b_j$
  3. set $x_j \leftarrow 0$ and $p_j \leftarrow 0$ f.a. $j \neq i$
\color{black}P' \color{black}P_{-e} = P'_{-e} \color{black}P \class{tempstep a}{\data{tempstep-from=38}{\,= P_{-e} = P'_{-e}}} \color{black}P'=P \color{black}P' \color{red}e \small\color{black} o \small\color{black} d

ยง5.3 The VCG-Mechanism

  • multiple items $E=\set{1,\dots,m}$
  • multiple players/buyers $N = \set{1,\dots,n}$
  • set of possible allocations $X \coloneqq \set{x: E \to N \cup \set{\bot}}$
  • players have private valuation functions $v_i: X \to \IRnn$
    and provide declared valuation functions $b_i: X \to \IRnn$ ("bids")
  • mechanism $M: (\IRnn^X)^N \to X \times \IRnn^N, b \mapsto (x,p)$
    $\implies$ $e$'s utility of $M(b)$ is $u_e(x,p) \coloneqq v_i(x)-p_i$
VCG Mechanism
Input: bids $b \in \bigl(\IRnn^X\bigr)^N$
Output: allocation $x^* \in X$ and payments $p \in \IRnn^N$
  1. determine $x^* \in \argmax_{x \in X}\sum_{i \in N}b_i(x)$
  2. For $i \in N$ Do
  3. mm determine $\bar x \in \argmax_{x \in X}\sum_{j \in N \setminus\set{i}}b_j(x)$
  4. mm set $p_i \leftarrow b_i(x^*) + \sum_{j \neq i}b_j(\bar x) - \sum_{j \in N}b_j(x^*)$
๐ŸŒ ๐ŸŽ ๐Ÿ‡ 4 โ‚ฌ 0 โ‚ฌ 3 โ‚ฌ ๐ŸŽ = 2 ๐ŸŒ+๐Ÿ‡ = 5 ...   ๐ŸŽ = 2 ๐ŸŒ+๐Ÿ‡ = 5 ...   ๐ŸŽ = 1 ๐ŸŒ+๐ŸŽ = 6 ...   ๐ŸŒ+๐ŸŽ = 4 ๐ŸŽ+๐Ÿ‡ = 2 ...   ๐Ÿ‡ = 2 ๐ŸŽ = 2 ...   ๐Ÿ‡ = 4 ๐ŸŽ = 3 ...  
Mechanism KW
Input: bids $b \in \IRnn^E$
Output: allocation $x \in \set{0,1}^E$ and payments $p \in \IRnn^E$
  1. compute shortest $o,d$-path $P$ wrt. edge costs $b_e$
  2. set $x_e \leftarrow 1$ for $e \in P$ and $x_e \leftarrow 0$ else
  3. For $e \in P$ Do
  4. mm compute shortest $o,d$-path $P_{-e}$ in $G_{-e}$ wrt. $b_e$
  5. mm set $p_e \leftarrow b_e + \bigl(\sum_{e' \in P_{-e}}b_{e'} - \sum_{e' \in P}b_{e'}\bigr)$
Thm. 5.6: The VCG mechanism is strategyproof and efficient.

ยง5.4 Single-Minded Bidders

  • multiple items $E=\set{1,\dots,m}$
  • multiple players/buyers $N = \set{1,\dots,n}$
  • set of possible allocations $X \coloneqq \set{x: E \to N \cup \set{\bot}}$
  • every buyer wants exactly one bundle of items, i.e.
    every player has $\emptyset \neq W_i \subseteq E$ and $w_i \in \IRnn$ with \[v_i(x) = \begin{cases}w_i, &\text{if } W_i \subseteq x^{-1}(i)\\0, &\text{else}\end{cases} \text{ for all } x \in X\]
  • every buyer declares bid $(B_i,b_i)$ with $B_i \subseteq E$, $b_i \in \IRnn$
Optimal Allocation for Single Minded Bidders (OAfSMB):
Input: players $N$, items $E$, bids $((B_i,b_i))_{i \in N}$
Output: set of winners $N^* \subseteq N$ with $B_i \cap B_j = \emptyset$ f.a. $i,j \in N^*$
Output: such that $\sum_{i \in N^*}b_i$ maximal
Thm. 5.7: OAfSMB is NP-hard.
mechanism is $\alpha$-efficient if $M((W_i,w_i)) = (x',p)$ with $\sum_{i \in N}v_i(x') \geq \frac{1}{\alpha}\max_{x \in X}v_i(c)$
Thm. 5.11: No $\bigO(\abs{E}^{1/2-\eps})$-efficient polynomial mechanism for any $\eps \gt 0$
Thm. 5.11: for single minded bidders unless NP $\subseteq$ ZPP
๐ŸŒ ๐ŸŽ ๐Ÿ‡ ๐ŸŒ+๐Ÿ‡ = 5 ๐ŸŒ+๐Ÿ‡ = 7 ๐ŸŽ = 2 ๐ŸŒ+๐ŸŽ = 4 ๐Ÿ‡+๐ŸŽ+๐ŸŒ = 2 ๐Ÿ‡+๐ŸŽ+๐ŸŒ = 3
Maximum Independent Set:
Input: undirectd graph $D=(V,E)$
Output: set $I \subseteq V$ with $\set{u,v} \notin E$ f.a. $u,v \in I$
Output: such that $\abs{I}$ maximal
Fact: Maximum Independent Set is NP-hard.
Fact: No polynomial $\bigO(\abs{V}^{1-\eps})$-approximation algorithm
Fact: for Maximum Independent Set unless NP $\subseteq$ ZPP
Greedy Mechanism
Input: bids $(B_i,b_i) \in \PSet{E} \times \IRnn$ for all $i \in N$
Output: winners $N' \subseteq N$ and payments $p \in \IRnn^{N'}$
  1. sort players s.th. $\frac{b_1}{\sqrt{\abs{B_1}}} \geq \frac{b_2}{\sqrt{\abs{B_2}}} \geq \dots \geq \frac{b_n}{\sqrt{\abs{B_n}}}$; init. $N' \leftarrow \emptyset$
  2. For $i \in N$ Do
  3. mm If $B_i \cap B_j = \emptyset$ f.a. $j \in N'$ Then $N' \leftarrow N' \cup \set{i}$
  4. For $i \in N'$ Do
  5. mm set $j \leftarrow \inf\Set{j' \gt i \SMid \begin{array}{l}B_i \cap B_{j'} \neq \emptyset \text{ and }\\ B_k \cap B_{j'} = \emptyset \text{ f.a. } k \lt j', k \in N'\setminus\set{i}\end{array}}$
  6. mm If $j \neq \infty$ Then $p_i \leftarrow \frac{b_j}{\sqrt{\abs{B_j}}}\sqrt{\abs{B_i}}$ Else $p_i \leftarrow 0$
Lem. 5.9: mechanism for single-minded bidders is sp if
  1. $i$ wins with $(B_i,b_i)$, $B'_i \subseteq B_i$ and $b'_i \geq b_i$
    $\implies i$ wins with $(B'_i,b'_i)$ as well          (Monotonicity)
  2. $i$ wins with $(B_i,b_i)$ and pays $p_i$
    $\implies p_i = \min\set{b_i' \sMid (B_i,b'_i) \text{ wins}}$     (critical value)
  3. $i$ does not win $\implies p_i=0$
Lem. 5.10: Under truthful bidding Greedy finds $N'$ with
$\sum_{i \in N'}w_i \geq \frac{1}{\sqrt{\abs{E}}}\max\set{\sum_{i \in N^*}w_i \sMid N^* \subseteq N \text{ solution}}$
Thm. 5.8: Greedy is strategyproof, $\sqrt{\abs{E}}$-efficient, poly.

ยง5.5 Single-Parameter Environments

  • a single type of item
  • multiple players $N = \set{1,\dots,n}$
  • private per unit value $v_i \in \IRnn$
  • players declare per unit bid $b_i \in \IRnn$
  • set of possible allocations $X \subseteq \IRnn^N$
    โคณ $x \in X$ โ‰™ $i$ gets $x_i$ units
  • mechanism $M: \IRnn^N \to X \times \IRnn^N, b \mapsto (x,p)$
      with payment $p_i \leq x_i\cdot v_i$
  • $i$'s utility of $M(b)=(x,p)$ is $u_e(x,p) \coloneqq x_i\cdot v_i - p_i$
Generic Mechanism
Input: per unit bids $b \in \IRnn^N$
Output: allocation $x$ and payments $p \in \IRnn^N$
  1. compute alloction $x(b) \in X$     "allocation rule"
  2. compute payments $p(b) \in \IRnn^N$       "payment rule"
allocation rule $x: \IRnn^N \to X$ is implementable
    $\coloniff \exists$ payment rule $p: \IRnn^N \to \IRnn^N$
    s.th. the above mechanism is strategyproof
Examples:
Thm. 5.18 (Myerson's Lemma):
For piece-wise constant (in each player's bid) allocation rules $x$ we have:
  1. $x$ implementable $\iff x$ monoton
    $x$ implementable $\iff x$ i.e., $z \leq y \implies x_i(z,b_{-i}) \leq x_i(y,b_{-i})$
  2. $x$ implementable $\implies \exists$ unique implementing payment rule
  3. $x$ implementable $\implies$ payment rule defined by $p_i(b) \coloneqq \sum_{j=1}^\ell z_j h_j$
    mmm where $z_j$ are jump points of $x_i(\_,b_{-i})$ until $b_i$ with height $h_j$
\small\color{var(--cyan)}v_i\cdot x_i(b) \small\color{var(--red)}p_i(b) \small\color{black}x_i \small\color{black}b_i \small\color{var(--blue)} x_i(\_\_,b_{-i}) \small\color{gray}z_1 \small\color{gray}h_1 \small\color{gray}z_2 \small\color{gray}h_2 \small\color{gray}z_3 \small\color{gray}h_3 \small\color{gray}z_4 \small\color{gray}h_4 \small\color{var(--green)}y \small\color{var(--green)}b_i \small\color{var(--red)}z \small\color{var(--red)}v_i \small\color{var(--red)}z
Computational Game Theory (WiSe25/26), ยง5 Combinatorial Auctions
Lukas Graf (lukas.graf@uni-passau.de)
↑ All Slides